

Technical Data Sheet

swiftsupplies.com.au

Weicon Plastic Metal A is a versatile type of epoxy putty made from steel filled epoxy resin. This grade is incredibly versatile and can be used for all kinds of repair, maintenance and production work.

Once the two parts are mixed together, it has a pasty consistency so it can be moulded into shape. Once cured, it will form an extremely hard, abrasion resistant compound that will withstand wear, a wide range of chemicals and temperatures up to 120°C.

Cured Plastic Metal A will be dark grey in colour and can be painted over if required. It can also be machined, filed or sanded to give you a very precise finish for jobs that need it.

View This Product

This grade of Plastic Metal is used all around the world in a variety of different industries and applications (just some of which are listed below). It is certified by Germanischer Lloyd for use as a repair compound in the marine industry and is also registered with IMPA and ISSA.

Applications

- Repairing cracks on pump housings, motor casings and other metal surfaces.
- Eliminating corrosion damage and pitting on tanks, pipes and containers.
- Filling holes and repairing leaking pipes.
- Fixing broken castings.
- · Making moulds, models, tools and fixtures.
- Heavy duty bonding of a wide range of materials.

Technical Details

Basis	Steel Filled Epoxy Resin
Mix Ratio (Resin / Hardener)	10:1
Density of the Mixture	2.9 g/cm ³
Pot Life at 200g of Material At 20°C	60 Min.
Viscosity of the Mixture	1,000,000 MPa
Colour After Curing	Dark grey
Maximum Layer Thickness (per application)	10mm
Mechanical Strength (50%) When Curing at 20°C	16 Hours
Final Strength (100%) When Curing at 20°C	24 Hours

Mean Compressive Strength at 25°C (DIN 53281-83)	80 MPa	
Mean Tensile Strength	24 MDa	
at 25°C (DIN 53281-83)	21 MPa	
Mean Flexural Strength	34 MPa	
at 25°C (DIN 53281-83)	34 WII a	
Mean E-Modul	3,500 – 5,000 MPa	
at 25°C (DIN 53281-83)	5,500 – 5,000 MFa	
Shore Hardness at 25°C	90 Shore D	
(DIN 53281-83)	90 Shore D	
Shrinkage	0.015%	
Thermoforming Resistance	+65°C	
Temperature Resistance	-35°C to +120°C	
Thermal Conductivity	0.3 W/m⋅K	
(ISO 8894-2)	0.5 W/III-K	
Dielectric Strength	1.2 kV/mm	
(ASTM D 149)	1.2 KV/IIIII	
IMPA References	81 29 01 & 81 29 02	
ISSA References	75.509.01 & 75.509.02	
Germanischer Lloyd	Yes	
Certified	165	

Technical Data Sheet

swiftsupplies.com.au

Plastic Metal A Chemical Resistance After Curing

Acetic Acid Dilute (<5%)	+	Hydroc
Acetone	0	Hydroc
Alkalis (Basic Minerals)	+	Hydroc
Amyl Acetate	+	Hydrofl
Amyl Alcohols	+	Hydrog
Anhydrous Ammonia (25%)	+	Impregi
Barium Hydroxide	+	Magnes
Butyl Acetate	+	Maleic
Butyl Alcohol	+	Methan
Calcium Hydroxide (slaked lime)	+	Milk of
Carbolic Acid (Phenol)	-	Naphth
Carbon Disulphide	+	Naphth
Carbon Tetrachloride	+	Nitric A
Caustic Potash Solution	+	Oils, Ve
Chlorinated Water	+	Oxalic /
Chloroacetic Acid	-	Paraffir
Chloroform	0	Perchlo
Chlorosulphonic Acid	-	Petrol (
Chromic Acid	+	Phosph
Chroming Baths	+	Phthalic
Creosote Oil	-	Phthalic
Cresylic Acid	-	Potassi
Crude Oil	+	(Causti
Crude Oil Products	+	Soda L
Diesel Fuel Oil	+	Sodium
Ethanol < 85% (Ethyl Alcohol)	0	_(Sodiur
Ethyl Alcohol	0	Sodium
Ethyl Benzole		Sodium
Ethyl Ether	+	Sodium
Exhaust Gases	+	_(Causti
Formic Acid (>10%)		Sulphu
Glycerine	+	Sulphu
Glycol	0	Tannic
Grease, Oils and Waxes	+	<u>Tetralin</u>
Heating Oil, Diesel	+	Toulene
Humic Acid	+	_Trichlor
Hydrobromic Acid (<10%)	+	Turpen
Hydrocarbons (Aliphatic)	+	Xylene

Hydrocarbons (Aromatic) -	
Hydrochloric Acid (<10%) +	
Hydrochloric Acid (10-20%) +	
Hydrofluoric Acid Dilute O	
Hydrogen Peroxide (<30%) +	
Impregnating Oils +	
Magnesium Hydroxide +	
Maleic Acid +	
Methanol (Methyl Alcohol, <85%)	
Milk of Lime +	
Naphthalene -	
Naphthene -	
Nitric Acid (<5%)	
Oils, Vegetable and Animal +	
Oxalic Acid (<25%) +	
Paraffin +	
Perchloroethylene O	
Petrol (92-100 Octane) +	
Phosphoric Acid (<5%) +	
Phthalic Acid +	
Phthalic Acid Anhydride +	
Potassium Hydroxide	
(Caustic Potash, 0-20%)	
Soda Lye +	
Sodium Bicarbonate	
(Sodium Hydrogen Carbonate)	
Sodium Carbonate (Soda) +	
Sodium Chloride (Cooking Salt) +	
Sodium Hydroxide	
(Caustic Soda, <20%)	
Sulphur Dioxide +	
Sulphuric Acid (<5%) O	
Tannic Acid Dilute (<7%) +	
Tetralin O	
Toulene -	
Trichloroethylene O	
Turpenetine Substitute (White Spirit) +	
Xylene -	

+ = Resistant

O = Resistant for a Limited Time

- = Not Resistant

Technical Data Sheet

swiftsupplies.com.au

Preparation of the Surface

To ensure a perfect bond, the surface to which the Plastic Metal will be applied must be clean, dry and degreased. Most surface contaminants (e.g. old paint residues, oil, grease, dirt, dust) can be removed with either Weicon Cleaner S or Weicon Sealant and Adhesive Remover.

If the surfaces are very smooth, the adhesion achieved by Plastic Metal can be enhanced by sandblasting with a suitable grain size of sand or by roughening with a coarse abrasive material.

Cast parts, which have been exposed to sea water for a long time, should be treated with special care as they might contain inorganic salts. It is possible that these salts reach the surface and absorb moisture, thus starting the formation of rust (rust bubbles under the protective coating). It is therefore suggested that such parts are heated or exposed to flame after sand blasting.

If adhesion is not desired, a separating agent must be used. For smooth surfaces, Weicon Mould Release Agent (silicone free) or Weicon Silicone Spray may be suitable.

It is suggested that you begin the application of Weicon Plastic Metal immediately after surface pretreatment to avoid oxidation and instantaneous rust formation.

Application

Mixing

Before adding the hardeners to the larger resin container, it is very important that your stir up the fillers in the resin thoroughly while ensuring that they do not contain bubbles. After this has been done, mix the resin and the hardener for at least 4 minutes using the spatula supplied with every Plastic Metal kit or with a mechanical mixer (at low speed, max. 500 rpm) to get a uniform mass.

Do not mix more material that you intend to use within the pot life and be sure to strictly observe the specified mixing ratio of 1:1 for Plastic Metal HB 300 (tolerance on this ix a maximum of +/- 2%).

Pot Life and Processing Time

The indicated pot life refers to mixtures of 200gm prepared at 20°C. Larger quantities will cure faster due to the typical exothermic reaction associated with epoxy resins. Weicon Plastic Metals should be processed at room temperature (approximately 20°C).

Pot life and cure time will be reduced considerably at higher temperatures. The rule of thumb for this is every increase of 10°C above room temperature leads to a reduction in pot life and cure time of about 50%. At temperatures below 16°C the pot life will slow. Below about 5°C there is no reaction between the resin and the hardener.

Cure and Treatment

Weicon Plastic Metal A can be machined or demoulded after about 16 hours at room temperature. Final cure will be achieved after 24 hours.

In low temperature environments, the cure time can be accelerated via the application of heat up to a maximum of 40°C (via a heat lamp, electric blanket or hot air fan). To avoid thermal overheating and possible deformation the surface must not be warmed up with open flame.

Storage

When stored unopened and in normal climatic conditions (20°C) Weicon Plastic Metal A has a minimum shelf-life of 24 months. Storage in direct sunlight should be avoided. Opened containers must be used within 6 months.

Available Sizes

Plastic Metal A Steel Filled Epoxy is available from Swift Supplies in 0.5kg & 2kg Kits. Each kit contains the correct proportions of resin and hardener, plastic gloves and a plastic mixing spatula.

Date Created: 29/6/2017 Date Modified: 30/6/2017 Document # SSD-TDS-SWP000156